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Chaos and the continuum limit in the gravitational N-body problem. II. Nonintegrable potentials

Ioannis V. Sideris*
Department of Astronomy, University of Florida, Gainesville, Florida 32611

Henry E. Kandrup†

Department of Astronomy, Department of Physics, and Institute for Fundamental Theory, University of Florida,
Gainesville, Florida 32611

~Received 3 December 2001; revised manuscript received 26 February 2002; published 11 June 2002!

This paper continues a numerical investigation of the statistical properties of ‘‘frozen-N orbits,’’ i.e., orbits
evolved in frozen, time-independentN-body realizations of smooth density distributionsr corresponding to
both integrable and nonintegrable potentials, allowing for 102.5<N<105.5. The focus is on distinguishing
between, and quantifying, the effects of graininess on initial conditions corresponding, in the continuum limit,
to regular and chaotic orbits. Ordinary Lyapunov exponentsx do not provide a useful diagnostic for distin-
guishing between regular and chaotic behavior. Frozen-N orbits corresponding in the continuum limit to both
regular and chaotic characteristics have large positivex even though, for largeN, the ‘‘regular’’ frozen-N orbits
closely resemble regular characteristics in the smooth potential. Alternatively, viewed macroscopically, both
regular and ‘‘chaotic’’ frozen-N orbits diverge as a power law in time from smooth orbits with the same initial
condition. However, convergence towards the continuum limit is much slower for chaotic orbits. For regular
orbits, the time scale associated with this divergencetG;N1/2tD , with tD a characteristic dynamical, or
crossing, time; for chaotic orbitstG;(ln N)tD . For N.1032104, clear distinctions exist between the phase
mixing of initially localized ensembles, which, in the continuum limit, exhibit regular versus chaotic behavior.
Regular ensembles evolved in a frozen-N density distribution diverge as a power law in time, albeit more
rapidly than ensembles evolved in the smooth distribution. Chaotic ensembles diverge in a fashion that is
roughly exponential, albeit at a larger rate than that associated with the exponential divergence of the same
ensemble evolved in smoothr. For both regular and chaotic ensembles, finite-N effects are well mimicked,
both qualitatively and quantitatively, by energy-conserving white noise with amplitudeh}1/N. This suggests
strongly that earlier investigations of the effects of low amplitude noise on phase space transport in smooth
potentials are directly relevant to real physical systems.

DOI: 10.1103/PhysRevE.65.066203 PACS number~s!: 05.45.2a, 05.60.2k, 51.10.1y, 98.10.1z
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I. INTRODUCTION

This is the second in a series of papers, the aim of wh
is to understand the role of discreteness effects, i.e., gra
ness, in the gravitationalN-body problem. Particular empha
sis is placed on the meaning of chaos and various man
tations of chaotic behavior. As discussed in the first paper@1#
~hereafter Paper I!, this problem can be divided into tw
separate components, namely, first understanding how gr
ness alters the motions of representative orbits in a fi
gravitational potential and only then considering how the
changes are manifested in the context of a fully se
consistentN-body evolution. As in Paper I, the focus here
on the former issue.

One is thus led naturally to effect a statistical comparis
between~1! orbits evolved in a frozenN-body density distri-
bution generated by randomly sampling some speci
smooth density distributionr and ~2! orbits evolved in the
smooth potentialF related to r by Poisson’s equation
¹2F54pGr.

In this setting, the present paper has two specific ob
tives, namely,~1! to implement precise, quantitative distin
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tions between ‘‘regular’’ and ‘‘chaotic’’ behavior in suc
frozen-N systems and~2! to determine the extent to whic
discreteness effects can be mimicked successfully by a
ably defined noise acting on orbits evolving in an otherw
smooth potential.

Section II provides an overview of the motivations fo
and scope of, this paper. Section III describes the poten
that were considered and the numerical experiments
were performed. Section IV describes the results derived
individual frozen-N trajectories, determining how these r
sults scale withN and demonstrating the extent to which th
can be mimicked by a suitably defined white noise. Sect
V describes the results derived for the phase mixing of o
ensembles, again considering both how things scale witN
and the degree to which discreteness effects can be m
icked by noise. Section VI focuses on the possibility of tra
sitions between regular and chaotic behavior, a phenome
that, especially for smallN, can be important for system
where the smooth potential allows a coexistence of la
measures of both regular and chaotic orbits. Section VII c
cludes by summarizing the principal conclusions and spe
lating on potential implications.

II. OVERVIEW

Implementing useful distinctions between regular a
chaotic behavior in frozen-N orbits is not completely trivial.
©2002 The American Physical Society03-1
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For example, ordinary Lyapunov exponents computed for
dividual orbits do not provide a useful diagnostic. Even
density distributions corresponding to integrable potenti
N-body orbits have large positive Lyapunov exponen
Moreover, even though there is a precise sense in which
N increases, frozen-N orbits come to more closely resemb
regular orbits in the smooth potential, the values of th
exponents donot decrease systematically with increasi
N @1,2#.

Viewed macroscopically, a frozen-N orbit and a smooth
orbit evolved from the same initial condition in density di
tributions, corresponding to an integrable potential, will ty
cally diverge linearly in time on a time scaletG}N1/2. As
discussed in Paper I, this superficially surprising result wo
appear to reflect the fact that the chaos is associated w
large number of encounters with neighboring particles, e
of very short duration, which tend to cancel systematically
as to have a comparatively minor macroscopic effect.

Following the pioneering work of Chandrasekhar@3,4#,
one might anticipate that discreteness effects act in much
same way as friction and white noise, so that they can
modeled in the context of the Fokker-Planck description.
the extent that this intuition is correct, earlier work probi
the effects of friction and noise on smooth potential orb
translates into specific predictions as to the expected eff
of graininess.

The amplitudeh associated with friction and noise de
fines a characteristic relaxation timetR51/h on which, e.g.,
the perturbation will induce significant changes in conser
quantities such as energy. However, modeling discrete
effects as a sequence of close binary encounters leads t
prediction @4# that tR}(N/ lnN)tD , with tD a characteristic
dynamical, or crossing, time. One might, therefore, ant
pate that discreteness effects in a system ofN bodies can be
reproduced by friction and noise with amplitudeh} ln N/N.

When subjected to friction and white noise, regular orb
in a smooth potential typically diverge as a power law fro
unperturbed orbits with the same initial condition. O
might, therefore, conjecture that discreteness effects will
duce a power law divergence between frozen-N orbits and
smooth characteristics with the same initial condition, a
that the divergence time scaletG for a system ofN bodies
can be mimicked by noise with amplitudeh} ln N/N. As
noted in Paper I, frozen-N orbits and smooth regular chara
teristics do indeed tend to diverge linearly on a time sc
tG}N1/2tD , and, as will be seen below, this linear divergen
is well reproduced by an appropriately defined white no
with amplitudeh}1/N. ~Given the limited dynamical rang
in particle number for the simulations described in th
paper—102.5<N<105.5—it would seem impossible to distin
guish unambiguously between scalingsh}1/N and h
} ln N/N. The simulations are consistent with both.!

When subjected to friction and white noise, chaotic orb
behave very differently. Comparatively weak perturbatio
typically induce an initial exponential divergence from t
unperturbed orbit at a rateL that is comparable to the large
~finite time! Lyapunov exponentxS for the unperturbed or-
bits @5#. For stronger perturbations, the separation betw
perturbed and unperturbed orbits quickly becomes ma
06620
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scopic, at which point the divergence become slower th
exponential, albeit still more rapid than what is observed
regular orbits. One might, therefore, expect that, when ac
on chaotic initial conditions, discreteness effects associa
with a finite-N system would induce~1! an initial exponen-
tial divergence at a rateL that is comparable toxS , a num-
ber typically much smaller than the ‘‘true’’ Lyapunov expo
nent x associated with orbits in the frozen-N system,
followed by ~2! a slower subexponential divergence that
still faster than the divergence associated with regular orb

The simulations summarized in this paper provided
unambiguous confirmation of the second of these expe
tions. Viewed macroscopically, frozen-N orbits correspond-
ing in the continuum limit to chaotic orbits typically diverg
linearly from smooth orbits with the same initial condition
but for largeN, the time scaletG}(ln N)tD associated with
this divergence is much shorter than the time scaletG
}N1/2tD associated with regular orbits.

Unperturbed orbits in a smooth integrable potential
multiply periodic and, as such, have Fourier spectra w
power concentrated at a countable set of discrete frequen
Friction and noise destroy this exact periodicity, resulting
a more complex Fourier spectrum. To the extent that
friction and noise are weak, the orbit should remain nea
regular and the spectrum should remain ‘‘similar to’’ th
spectrum associated with the unperturbed orbit. Howe
when the friction and noise become larger in amplitude,
orbit should become less nearly periodic, and the spect
should become more complex than the spectrum assoc
with the unperturbed orbit. In the same sense, one m
expect that, asN decreases, frozen-N orbits corresponding to
regular orbits in a smooth potential will become ‘‘less reg
lar’’ and be characterized by Fourier spectra that are m
complex. This intuition can be made precise by comput
from an orbital time series such quantifiable measures
orbital complexity@6# as ~1! the number of frequencies in
discrete Fourier series that contain more than some fi
fraction j of the power in the peak frequency or~2! the mini-
mum number of frequencies required to capture a fixed fr
tion k of the total power.

By contrast, chaotic orbits in a smooth potential are,
general, aperiodic@7#. This implies that, even in a discret
time series, their power should be spread over a larger n
ber of frequencies, so that the orbit will have substantia
larger complexity@6#. For very smallN, where the qualita-
tive character of the orbits is dominated by close encoun
and distinctions between chaotic and regular motions are
ficult to identify, one might expect that frozen-N orbits cor-
responding in the continuum limit to regular and chaotic
bits would have comparable complexities, much larger th
the typical complexity associated with a smooth regular o
and larger even than the complexity associated with
smooth chaotic orbit. AsN increases, discreteness effec
will presumably become less important and the complex
of both the regular and chaotic frozen-N orbits will decrease.
For the case of regular frozen-N orbits, the complexity
should eventually converge towards the comparatively sm
value associated with a smooth regular orbit. For the cas
chaotic frozen-N orbits, the complexity should instead con
3-2
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verge towards the substantially larger value associated w
smooth chaotic orbit.

To the extent that discreteness effects associated wi
fixed numberN can be successfully modeled in terms of
suitably defined noise with amplitudeh, one might also ex-
pect that the typical complexityn(N) associated with a
frozen-N orbit with givenN will be comparable to the com
plexity n(h) associated with a smooth orbit with the sam
initial condition evolved in the presence of perturbations
amplitudeh}1/N. As described below, both these intuition
were in fact confirmed.

Discreteness effects can also be explored in the conte
the phase mixing of initially localized orbit ensembles,
subject that has received considerable attention in both
lactic astronomy@8–10# and accelerator dynamics@11,12#
since Merritt and Valluri@13# coined the term chaotic mixing
to characterize the much more efficient phase mixing ass
ated with ensembles of chaotic orbits.

Localized ensembles of regular initial conditions evolv
in a smooth potential will initially diverge as a power law
time and, when viewed over much longer time scales, exh
a coarse-grained evolution, again proceeding as a power
in time, towards a time-independent equilibrium state. T
introduction of friction and noise accelerates the original
vergence, but that divergence still proceeds as a power la
time. Quantifying the later time evolution is more subt
because the perturbations allow the orbits to access p
space regions that would otherwise be inaccessible. H
ever, whatis clear is that, as probed by various lower ord
moments, the ensemble evolves exponentially in time
wards a well-mixed state that manifests the symmetries
the unperturbed potential. If, e.g., the potential admits a
flection symmetry,F(2x)5F(x), the mean valuêx& asso-
ciated with the ensemble will converge exponentially
wards zero.

By contrast, localized ensembles of chaotic orbits evolv
in a smooth potential initially diverge exponentially at a ra
L that is comparable to the value of the largest Lyapun
exponentxS and, when viewed over somewhat longer tim
scales, exhibit a coarse-grained evolution, exponentia
time, towards a time-independent, or nearly tim
independent, state. The ratel associated with this subse
quent evolution is typically much smaller thanL and is not
directly related toxS , although loose correlations betweenl
andxS often exist@13#. Subjecting these same ensembles
friction and noise typically increases the rateL associated
with the initial divergence, making the orbits behave in
fashion that is even more chaotic. Over sufficiently long tim
scales, these perturbations will drive the ensemble towar
thermal state with a temperatureQ set by the friction and
noise. However, on time scales much shorter than the na
time scaletR associated with the friction and noise, the e
semble will again evolve towards a nearly time-independ
distribution, and, in many cases, the perturbations will
crease the ratel associated with this convergence toward
near-equilibrium rate@18#.

The simulations described here demonstrate that, b
qualitatively and quantitatively, discreteness effects imp
phase mixing for both regular and chaotic orbits in much
06620
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same way as these perturbations.
Perhaps the most important conclusion of the work

scribed here is the apparent need to distinguish between
distinct types of chaos. Short-rangemicroscopic chaosasso-
ciated with close encounters between individual masses
ubiquitous phenomenon for theN-body problem, which ap-
pears to be present irrespective of the bulk properties of
density distribution. In addition, however, there is the pos
bility of macroscopic chaos, easily identified in the con-
tinuum limit, which has predictable implications for motion
in the N-body problem.

III. DESCRIPTION OF THE NUMERICAL EXPERIMENTS

The numerical experiments described here focused on
bits and orbit ensembles evolved in frozen-N realizations of
four different time-independent density distributions. In t
continuum limit, two of these correspond to integrable p
tentials, the other two correspond to potentials that ad
large measures of chaos. These orbits and orbit ensem
were also compared with orbits with the same initial con
tions evolved in the smooth potentials associated with
smooth density distributions, both with and without nois
Each system was normalized to have massM51, and the
units were so chosen that the gravitational constantG51.
The four density distributions were the following.

~1! A spherically symmetric Plummer sphere, for which

rP~r !5S 3M

4pb3D S 11
r 2

b2D 25/2

. ~3.1!

This corresponds via Poisson’s equation to a potential

FP~r !52
GM

Ar 21b2
. ~3.2!

Units were chosen such thatb51.
~2! A constant density triaxial ellipsoid, for which

rE~r !5
3M

4pabc
3H m2 if m2<1,

0 if m2.1,
~3.3!

with

m25S x2

a2
1

y2

b2
1

z2

c2D . ~3.4!

For m<1, this yields a potential of the form

FE~r !5F01
1

2
~va

2x21vb
2y21vc

2z2! ~3.5!

with frequenciesva , vb , vc , related to the axis value
a, b, c, in terms of incomplete elliptic integrals@14#.
Attention focused primarily on the specific parameter valu
a51.95, b51.50, and c51.05, which imply F0'
21.006 08,va'0.4663,vb'0.5508, andvc'0.6753.

~3! A constant density ellipsoid perturbed by a superm
sive black hole, corresponding to the potential
3-3
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FBH5FE2
GMBH

Ar 21e2
~3.6!

with e51023. Attention here focused on a black hole ma
MBH51021.5M'0.031 622 8M . This yields@15# a potential
for which, for orbits restricted energetically tom<1, the
phase space is almost completely chaotic.

~4! A triaxial generalization of the Dehnen@16# potential,
for which

rD~r !5
M ~32g!

4pabc
m2g~11m!2(42g) ~3.7!

with m again given by Eq.~3.4!. Attention focused on the
parameter valuesg51 and a51.0, b5A5.0/8.0, andc
50.5, values first considered by Merritt and Fridman@17# as
a prototype for a cuspy triaxial galaxy. The phase space
sociated with this potential has been studied extensiv
@17,18# and it is known that, especially for low energie
there exist large measures of both regular and chaotic or
The smooth potentialFD associated withrD cannot be writ-
ten analytically, so that integrations inFD were performed
using a 32nd order Gauss-Legendre integration scheme
ten by Siopis@19#.

Independent of energy, the characteristical orbital ti
scale for motion in the constant density ellipsoid, with
without a black hole, corresponds to a dynamical timetD

;10. ~The quantity 1/AGr'3.6.) The experiments with th
Plummer potential described in this paper were perform
for intermediate energies for which, again,tD;10. The De-
hnen potential exhibits a much larger degree of central c
centration and, as such,tD exhibits greater variability.

The ellipsoid potential~3.3! is particularly simple in the
sense that, in the continuum limit, all orbits oscillate with t
same periodicities so that there isno phase mixing. Any
phase mixing observed in a frozen-N simulation must be
attributed to discreteness effects. Given, moreover, that
statistical properties of noisy orbits in a harmonic poten
are well understood, it is comparatively simple to determ
whether these discreteness effects can be well represent
noise. The Plummer potential is more realistic in that
orbits oscillate with different periodicities so that, even in t
continuum limit, phase mixing occurs.

The nonintegrable potential~3.6! is simple in the sense
that for the energies and black hole masses considered
almost all smooth orbits are chaotic. This implies that, wh
consideringN-body realizations, one need not be much co
cerned about the possibility of graininess in converting
initially chaotic orbit into a regular orbit. By contrast, th
smooth Dehnen potential admits large measures of b
regular and chaotic orbits, so that graininess could well
duce numerous transitions between regular and chaotic
havior.

Frozen-N density distributions of the form

rN5
1

N (
i 51

N

dD~r2r i ! ~3.8!
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were generated by randomly sampling the smooth den
distributionsr. These correspond toN-body potentials

FN~r !52
1

N (
i 51

N
1

A~r2r i !
21e2

, ~3.9!

which incorporate a tiny softening parameter with valuee
<1023.

Orbits were integrated in frozen-N realizations with
102.5<N<105.5. The integrations were performed with
variable time step integration scheme that was guarantee
conserve the energy of each particle to at least one pa
103. The energy of a typical orbit was conserved to within
few parts in 105. Estimates of the largest~finite time!
Lyapunov exponent orbits were obtained in the usual way
simultaneously tracking the evolution of a small initial pe
turbation, periodically renormalized at fixed intervalsDt
@20#. The finite time Lyapunov exponents derived in th
fashion typically exhibited rapid convergence towards ne
constant values—much more rapid convergence than
been observed@15,18# for the smooth potentials—so that
time ;100 times the dynamical, or crossing, timestD was
sufficient to yield reasonable estimates.

Some of the orbital data were Fourier analyzed to de
mine their orbital complexity@6#. This entailed determining
for each orbit the quantitiesnx , ny , andnz , defined as the
minimum number of frequencies required to capture a fix
fraction k of the power in each direction, and then assigni
a total complexity

n5nx1ny1nz . ~3.10!

In order to obtain a reasonably sharp Fourier spectrum,
bital data were typically recorded at intervalsdt50.01tD or
less, and each orbit was represented by a time series con
ing at least 4096 points.

Phase mixing in frozen-N systems was explored by pe
forming integrations of orbit ensembles comprised~mostly!
of 1600 initial conditions localized within a phase space h
percube of size;1023 the size of the accessible phase spa
region. For each cell of initial conditions, experiments we
typically repeated for several different frozen-N density dis-
tributions, each sampling the same smoothr, so as to extract
improved statistics. The experiments withN5102.5, 103, and
103.5 were each performed for six different frozen-N density
distributions, those withN5104 and 104.5 for four distribu-
tions, and those forN5105 for two distributions. Because o
computational constraints—each orbit withN5105.5 aver-
aged roughly 3 h on aPentium 200 workstation—the lon
time ensemble integrations forN5105.5 were performed for
only one ensemble, comprised of 800, rather than 1600,
bits. However, the first fifth of each integration, in man
respects the most interesting,was repeated for a secon
frozen-N distribution.

To test the intuition that discreteness effects can be m
icked by friction and white noise in the context of a Fokke
Planck description, orbit ensembles were also evolved in
smooth potential in the presence of a suitably defined w
3-4
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noise. Ordinarily, discreteness effects are modeled by con
ering a Langevin equation@21#

d2r a

dt2
52¹aF2h

dra

dt
1Fa ~a5x,y,z!. ~3.11!

Herehdra /dt represents a dynamical friction andFa repre-
sents Gaussian white noise, which is characterized c
pletely by its first two moments

^Fa~ t !&50 ~a,b5x,y,z!

and

^Fa~ t1!Fb~ t2!&52hQdabdD~ t12t2!, ~3.12!

where D[2hQ represents the diffusion constant enteri
into a Fokker-Planck description. ChoosingQ equal to the
initial energy then ensures that the average energy of
orbits remains unchanged.

Such an equation is unsatisfactory here. Energy is c
served absolutely for frozen-N orbits, so that one must als
impose energy conservation on any scheme that aim
mimic its effects.~For very smallh, the energy remains al
most conserved for very long times. However, comparativ
small N should correspond to relatively largeh, which im-
plies large changes in energy and, as such, signific
changes in the phase space regions accessible to the
orbit.! For this reason, the noisy integrations described h
were performed using a modified energy-conserving nois

This entailed~1! eliminating the dynamical friction alto
gether,~2! again imparting random kicks as in Eq.~3.12!, but
~3! renormalizing the modified velocity at each time step
an overall factor, i.e.,v(t1dt)→av(t1dt), with a so cho-
sen that E(t1dt)5E(t). Modulo this complication, the
noise was integrated using a standard algorithm@22# based
on a fourth order Runge-Kutta integration scheme with
fixed time stepdt. The integrations were performed fordt
5231024, it having been confirmed that the statistical e
fects of the noise were insensitive to the precise value odt
for dt,1023.

IV. REGULAR AND CHAOTIC ORBITS

A. Ordinary Lyapunov exponents: A useless diagnostic
for macroscopic chaos

In terms of Lyapunov exponents for individual orbits,
appears impossible to distinguish between frozen-N trajecto-
ries corresponding to regular orbits in a smooth potential
frozen-N trajectories corresponding to chaotic orbits. Reg
lar and chaotic frozen-N orbits have positive Lyapunov ex
ponents that are comparable in magnitude, and that ma
tude is typically much larger than the magnitude of t
largest Lyapunov exponent for chaotic orbits evolved in
smooth potential.

This is illustrated by Fig. 1, which exhibits, as function
of N, estimates of the largest Lyapunov exponents for froz
N realizations of the homogeneous ellipsoid, both with a
without a central mass. Each curve in this figure represen
06620
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mean value extracted by averaging over four different ini
conditions. The three curves correspond to regular ini
conditions evolved in an ellipsoid withMBH50 ~solid line!
and ‘‘sticky chaotic’’ ~dashed lines! and ‘‘wildly chaotic’’
~dot-dashed lines! initial conditions evolved in an ellipsoid
with MBH51021.5. ~Recall@23# that sticky chaotic orbit seg
ments correspond to segments of a chaotic orbit that are
fined temporarily near a regular island and behave in a ne
regular fashion.! Three points are immediately apparent:~1!
The estimates ofx computed for these three different sets
initial conditions are very nearly equal in magnitude.~2!
Consistent with the results described in Paper I, one obse
no systematic dependence onN. ~3! The typical value ofx is
comparatively large, much larger than the typical valuesxS
associated with motion in the smooth potential. For the v
ues of energyE and massMBH used to generate thesex ’s,
wildly chaotic orbit segments in the smooth potential typ
cally havexS;0.055 and sticky segments havexS;0.022.

That regular orbits withMBH50 and chaotic orbits with
MBH.0 havex ’s that are approximately equal, and that th
value is much larger thanxS suggests strongly that thes
exponents reflect almost completely the effects of mic
scopic chaos associated with close encounters, and tha
form of the bulk potential is largely immaterial. In both cas
the frozen-N orbits are moving through an ellipsoid with th
same constant density; and, since the black hole massMBH
51021.5!1, the presence or absence of the black hole d
not significantly impact the natural orbital time scale.

B. The divergence ofN-body orbits from smooth characteristics

One way to effect macroscopic comparisons of frozenN
orbits and smooth characteristics generated from the s
initial condition is by computing such diagnostics as the co
figuration and velocity space separations,

Dr ~ t ![urS~ t !2rN~ t !u and Dv~ t ![uvS~ t !2vN~ t !u,
~4.1!

where (rS ,vS) and (rN ,vN) denote, respectively, phase spa
coordinates for orbits in the smooth and frozen-N density
distributions@24#.

FIG. 1. Estimates of the largest Lyapunov exponent for orb
evolved in frozen-N realizations of a homogeneous ellipsoid: int
grable initial conditions evolved withMBH50 ~solid line!, sticky
initial conditions evolved withMBH51021.5 ~dashed line!, and
wildly chaotic initial conditions with MBH51021.5 ~dot-dashed
line!.
3-5
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It was found in Paper I that for individual regular orbi
@25#, Dr and Dv typically grow linearly in time. A corre-
sponding analysis for chaotic orbits is somewhat less con
sive, since, apparently, different chaotic orbits can exhib
larger degree of variety in their behavior. However, by av
aging over an ensemble ofm different initial conditions and
computing the mean separation

Dr ~ t ![
1

n (
i 51

m

Dr i~ t ! ~4.2!

and an analogousDv(t), one can again extract an unambig
ous trend. As for the case of regular orbits, so also for cha
orbits, viewed macroscopically,Dr and Dv diverge linearly
in time. This is, e.g., illustrated in the first seven panels
Fig. 2, which were generated by effecting pointwise co
parisons of 800 smooth and frozen-N orbits in the potential
~3.6! for different values ofN ranging betweenN5102.5 and
N5105.5. The initial conditions, chosen identically for eac
value ofN, were selected so as to correspond to wildly ch
otic orbits, for which a typical finite time Lyapunov expone
xS'0.055.

Regular and chaotic frozen-N orbits are similar in that
they both diverge from a smooth characteristic with the sa

FIG. 2. The mean separationDr between frozen-N orbits and
smooth characteristics with the same initial conditions, compu
for ensembles of 800 chaotic initial conditions evolved in the p
tential ~3.6! for variableN: ~a! N5102.5, ~b! N5103, ~c! N5103.5,
~d! N5104, ~e! N5104.5, ~f! N5105, ~g! N5105.5. ~h! The growth
rate tG(N) extracted from the preceding panels, assuming a lin
growth law. The solid line overlays a least squares fittG5A
1B log10N.
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initial condition as a power law in time:Dr 5AGt. However,
the characteristic time scales involved are very different.
regular orbits in the Plummer potential, it was found@cf. Eq.
~4.8! in Paper I# that

tG'AG,regN
1/2tD ~regular!, ~4.3!

where tD is a characteristic crossing time andAG,reg is a
constant of order unity. For chaotic orbits in the Dehn
potential and the ellipsoid plus black hole potential~3.6!, one
discovers instead that

tG'AG,cha~ lnN!tD ~chaotic!, ~4.4!

where, again,AG,cha is of order unity.
The goodness of fits to such a logarithmic dependenc

exhibited in the final panel of Fig. 2, which exhibits grow
times tG derived from least squares fits to the data in t
preceding panels. This panel should be contrasted with Fi
in Paper I, which exhibits an analogous curve derived
regular orbits in the Plummer potential.

C. Distinctions based on orbital ‘‘complexity’’

The fact that, asN increases, frozen-N orbits remain close
to smooth characteristics with the same initial condition
progressively longer times implies that in terms of visu
appearance, they also tend to more closely resemble t
smooth characteristics. This visual impression is easily c
roborated by an examination of the complexity of the Four
spectra, which characterize the extent to which the orbits
or are not, nearly periodic. For comparatively smallN,
frozen-N orbits corresponding to both regular and chao
characteristics look strongly aperiodic and wildly chaotic
appearance. Not surprisingly, therefore, their complexit
are very large, large compared even with the complexi
associated with ordinary wildly chaotic orbits evolved in t
corresponding smooth potential. However, asN increases,
the complexities of regular and chaotic frozen-N orbits both
decrease and, for sufficiently largeN, the complexitiesn(N)
converge towards the valuesnS associated with orbits in the
smooth potential. For frozen-N orbits corresponding to regu
lar characteristics, thisnS is typically quite small; for orbits
corresponding to chaotic characteristics,nS is typically much
larger.

Analogous results are obtained for orbits evolved in
presence of ordinary friction and noise@26# and, as such, it is
natural to ask whether the observed variations in comple
resulting from changes inN can also be mimicked by the
energy-conserving noise considered in this paper. Ove
the answer to this would seem to be yes.

Figure 3 exhibits the mean complexityn for representa-
tive samples of orbits evolved in the potentials~3.2!, ~3.5!,
and ~3.6!. In each case, the complexities were compu
from an orbital time series that sampled an orbit of durat
T5512 at intervalsDt50.05. The first two panels were gen
erated for the Plummer and homogeneous ellipsoid po
tials, both corresponding in the continuum limit to com
pletely integrable motion. The last two panels exhi
complexities computed for initial conditions correspondi
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-
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to wildly chaotic and sticky chaotic orbits in the ellipso
plus black hole potential. In each panel, the diamonds refl
complexities computed for frozen-N orbits with different
values ofN and the horizontal dashed line corresponds to
mean complexity for unperturbed orbits with the same ini
conditions evolved in the corresponding smooth potent
The triangles reflect complexities computed for motion in
smooth potential perturbed by noise withQ51.0 and a co-
efficient h related toN via a relation log10h5A2 log10N.

The constantsA were not determined by using a leas
squares algorithm to make the two curves coincide, at le
approximately. Rather, as described in Sec. V, the connec
betweenh and N was effected by demanding that, for th
case of regular orbits, noise of amplitudeh and discretenes
effects associated with a system ofN particles yield phase
mixing at the same rates. For the Plummer potential,
requiresAPlum'0.0. For the homogeneous ellipsoid,Aell ip
'0.5. Because the black hole mass in the potential~3.6! is
much smaller than the total mass of the system—MBH
51021.5M—it should have only a minimal effect on th
characteristic orbital time scales, and for this reason, the
two panels involved fits assumingA5Aell ip .

The correspondence between frozen-N and noisy com-
plexities is quite good, except for very smallN and very
largeh, where systematic discrepancies can be seen to o
This means that if the amplitude of the noise is tuned so a
reproduce the expected macroscopic behavior assoc
with the regular phase mixing of orbit ensembles, individu

FIG. 3. The mean complexityn for orbits evolved in the poten
tials ~3.2!, ~3.5!, and ~3.6!, considering both frozen-N orbits with
variableN ~diamonds! and smooth orbits perturbed by noise wi
Q51.0 and variableh ~triangles!. h was related toN by the rela-
tion h5eA/N, with A determined as described in the text. T
dashed horizontal line exhibits the mean complexity of orbits w
the same initial conditions evolved in the smooth potential in
absence of noise.~a! Regular orbits in the Plummer potential.~b!
Regular orbits in the homogeneous ellipsoid potential.~c! Wildly
chaotic orbits in the ellipsoid plus black hole potential.~d! Sticky
chaotic orbits in the ellipsoid plus black hole potential.
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noisy orbits—both regular and chaotic—will also manifes
degree of complexity comparable to that manifested by in
vidual frozen-N orbits.

V. PHASE MIXING OF ORBIT ENSEMBLES

A. Divergence of initially localized ensembles

For particle numberN,103 or so, initially localized regu-
lar and chaotic ensembles both phase mix extremely rap
in a fashion that makes it virtually impossible to distingui
between them. Indeed, it would appear that, for such sm
N, mixing is dominated by discreteness effects and the fo
of the bulk potential is comparatively unimportant. Howev
for N.103.5 or so, it becomes possible to make clear distin
tions between the phase mixing of ensembles that corresp
in the continuum limit to regular vis-a´-vis chaotic orbits. It
is, for example, evident that regular ensembles disperse
power law in time, whereas chaotic ensembles disperse
fashion that is roughly exponential.

Consider, e.g., the configuration dispersions r associated
with an ensemble,

s r
2[^r 2&2^r &2 ~5.1!

with

^r p&5
1

m (
i 51

m

~xi
21yi

21zi
2!p/2. ~5.2!

For a homogeneous ellipsoid withMBH50, which corre-
sponds in the continuum limit to integrable orbits all osc
lating with the same natural frequencies, there is no ph
mixing in the smooth potential, so thats r exhibits no sys-
tematic growth. If, however, the smooth potential is replac
by a frozen-N potential, one discovers instead thats r grows
as t1/2. More precisely, the growth of the dispersion is we
fitted by a simple relation of the form

s r5~ t/tG!1/2, ~5.3!

where

tG~N!5ANtD ~5.4!

and A is a constant of order unity. Thats r scales ast1/2 is
illustrated in Fig. 4, which plotss r

2(t) for a single ensemble
of initial conditions evolved in different frozen-N back-
grounds withN varying betweenN5102.5 andN5105. The
dots represent raw data recorded at intervalsDt50.25, the
solid curves represent the result of ‘‘box-car’’ averaging ov
20 adjacent data points. In each case it is apparent thas r

2

exhibits a roughly linear growth until it saturates at a val
;0.06, this corresponding tos r;0.25.

This t1/2 behavior is hardly surprising, corresponding as
does to the analytically predicted behavior of an ensembl
‘‘noisy’’ orbits, all evolved in a harmonic potential with the
same natural frequencies~cf. Ref. @3#!. That tG exhibits a
roughly linear dependence onN is consistent with the expec
tation @4# that discreteness effects should be manifested o

e
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relaxation timetR}N/ ln N. The validity of the scalingtG
}N is illustrated in Fig. 6, which will be discussed in great
detail below.

For more generic models such as the Plummer poten
where different integrable orbits oscillate with different fr
quencies, the behavior is more complex: For smallerN the
dispersion still grows ast1/2 on a time scale consistent wit
Eq. ~5.4!, but for largerN the growth is essentially linear
This can be interpreted as arising from a competition
tween two effects. Regular phase mixing, present even in
continuum limit, results in a dispersion that grows linearly
time, whereas an additional noise-induced phase mix
typically induces at1/2 divergence between perturbed a
unperturbed orbits. For largeN, discreteness effects hav

FIG. 5. ~a! The configuration dispersions r associated with an
initially localized ensemble evolved in frozen-N realizations of the
integrable Plummer potential~3.2! for ~from bottom to top! N
5103, N5103.5, N5104, N5104.5, and N5105. The top curve
represents unperturbed evolution in the smooth potential. Suc
sive curves are staggered upwards by distancess50.5. ~b! s r for
the same initial conditions evolved in the smooth potential,
perturbed by energy-conserving white noise withQ51.0 andh
51023, h51023.5, h51024, h51024.5, h51025, and h
51025.5.

FIG. 4. s r
2 , the square of the configuration dispersion associa

with an initially localized ensemble evolved in frozen-N realiza-
tions of the integrable ellipsoid potential~3.5! with ~from top to
bottom! N5103, N5103.5, N5104, N5104.5, andN5105.
06620
l,
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only a small effect on the phase mixing, so that the frozenN
s r exhibits the same linear dependence on time as
smooth potentials r . For smallerN, discreteness effects be
come more important and induce a larger amplitudet1/2

growth.
This behavior is illustrated in the left-hand panel of Fig.

which exhibitss r for evolution in the smooth Plummer po
tential and for frozen-N evolution with 102.5<N<105. It is
evident that forN>104, the overall growth is linear, at leas
until the dispersion saturates at a values r;0.4, and that this
linear evolution is nearly indistinguishable from the smoo
evolution. The only obvious difference is that discretene
effects tend to ‘‘fuzz out’’ the systematic oscillations asso
ated with strictly periodic orbits in the unperturbed potent
that yield the large spread in the values ofs r superimposed
on the overall linear growth. For smallerN, s r(t) is better
represented by at1/2 growth law, and, quite apparently, th
spread ins r is substantially reduced. This reduction is
manifestation of the fact that, for smallerN, the orbits in the
ensemble exhibit significant deviations from periodicity,
fact manifested by the increased complexities discusse
the preceding section.

Implicit in the preceding is the assumption that discre
ness effects really can be mimicked by noise. This was te
at two levels, namely,~i! a qualitative, visual comparison o
plots of s r(t) generated for both frozen-N and noisy en-
sembles and~ii ! a quantitative comparison of slopes asso
ated with as r

25t/tG growth law. The degree to which nois
can mimic discrete effects is evident visually from a co
parison of the left-hand panel in Fig. 5, which was genera
from frozen-N ensembles evolved in the Plummer potenti
with the right-hand panel, which were generated from
same ensembles of initial conditions, now evolved in t
smooth potential in the presence of energy-conserving w
noise. For particle number as small asN5102.5, the corre-
spondence is comparatively poor, the frozen-Ns r growing
considerably more rapidly than the noisys r . However, al-
ready forN5103 the correspondence is quite reasonable a
for N>104, the frozen-N and noisy plots are essentially in
distinguishable.

s-

t

FIG. 6. ~a! The growth timetG(N) for the dispersions r for
orbit ensembles evolved in frozen-N realizations of the Plumme
potential~diamonds!, and the corresponding growth timetG(h) for
orbit ensembles evolved in the smooth Plummer potential in
presence of energy-conserving white noise withQ51.0 and
log10h52 log10N ~triangles!. ~b! tG(N) and tG(h) for orbit en-
sembles in the homogeneous ellipsoid potential, now set
log10h52 log10N10.6.

d
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The preceding comparison of frozen-N ensembles with
fixed N and noisy ensembles evolved withh}1/N was mo-
tivated by the fact that, at least for comparatively largeh, the
noisy dispersions were also well fit by at1/2 growth law,
where, however,

tG5BtD /h, ~5.5!

with B a constant of order unity. A comparison of Eqs.~5.4!
and ~5.5! implies a natural identification

log10h5A2 log10N, ~5.6!

with A yet another constant. For the ellipsoid potential,
best fit A50.060.1. For the Plummer potentialA50.6
60.1. The identification between Figs. 5~a! and 5~b! as-
sumedA50.5. The extent to which the growth rates f
frozen-N and noisy orbits can be related by Eq.~5.6! may be
gauged from Fig. 6, which superimposes plots oftG(N) and
tG(h) for the Plummer and ellipsoid potentials, withN andh
related by Eq.~5.6!.

The behavior exhibited by ensembles corresponding
chaotic orbits is very different. In this case, the dispers
associated with an ensemble evolved in the smooth pote
typically diverges exponentially in time, and discreteness
fects only serve to accelerate this growth. This is, e.g., e
dent from Fig. 7~a!, which plots lnsr for an ensemble of
initial conditions evolved in the potential~3.6! that corre-
spond in the continuum limit to wildly chaotic orbits. It i
apparent that the growth ofs r is not strictly exponential, bu
it certainly is faster than the exponential growth associa
with the smooth potential, which is exhibited in the fin
panel. Another point is also evident: For the case of
Plummer potential, a frozen-N integration withN as small as
N;104.5 yields phase mixing almost identical to that o

FIG. 7. ~a! The configuration dispersions r associated with an
initially localized ensemble of wildly chaotic orbits evolved
frozen-N realizations of the nonintegrable potential~3.6! with ~from
bottom to top! N5102.5, N5103, N5103.5, N5104, N5104.5, N
5105, andN5105.5. The top curve represents unperturbed evo
tion in the smooth potential.~b! s r for the same ensemble, now
evolved in the presence of noise withQ51.0 andh51022, h
51022.5, h51023, h51023.5, h51024, h51024.5, h51025,
andh51027.5.
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served in the smooth potential. For the case of the cha
ensemble evolved in the potential~3.6!, even N5105.5

yielded phase mixing that wasmuch more rapidthan that
associated with the corresponding smooth potential.

Figure 8~a! exhibits an analogous plot, again generat
for the potential~3.6!, but now considering an ensemble
initial conditions which, in the continuum limit, correspon
to comparatively sticky chaotic orbits that initially disper
much more slowly.@The typical value of the largest finite
time Lyapunov exponent for smooth orbits in this sticky e
semble wasx(t5256);0.022. The typical value for the
wildly chaotic ensemble wasx;0.055.# For N<104 or so,
Figs. 7~a! and 8~a! are comparatively similar, the stickines
manifested in the continuum limit being largely lost. How
ever, for largerN more conspicuous differences become a
parent. It is, for example, clear that for a particle number
large asN5105.5, the dispersion for the sticky ensemble on
becomes macroscopic on a time scale appreciably lon
than the time scale for the wildly chaotic ensemble.

To a considerable degree, the behavior exhibited by c
otic frozen-N ensembles is again well mimicked by energ
conserving noise. This is, e.g., evident from Figs. 7~b! and
8~b!, which, respectively, exhibit the same ensembles of
tial conditions as Figs. 7~a! and 8~a!, now evolved in the
smooth potential in the presence of energy-conserving w
noise. The lower seven curves in these panels each invo
the same identification betweenN andh as did Fig. 6, mo-
tivated by the recognition that the black hole massMBH
51021.5 is too small to significantly alter the natural tim
scale tD . The top curve in each panel exhibits lnsr for h
51027.5, the largest value ofh that doesnot result in phase
mixing that is significantly more rapid than that associa
with the unperturbed smooth potential. Presuming that
correspondence betweenN and h established here can b
extrapolated to largerN and smallerh, it follows that, for the

-

FIG. 8. ~a! The configuration dispersions r associated with an
initially localized ensemble of sticky chaotic orbits evolved
frozen-N realizations of the nonintegrable potential~3.6! with ~from
bottom to top! N5102.5, N5103, N5103.5, N5104, N5104.5, N
5105, andN5105.5. The top curve represents unperturbed evo
tion in the smooth potential.~b! s r for the same ensemble, now
evolved in the presence of noise withQ51.0 andh51022, h
51022.5, h51023, h51023.5, h51024, h51024.5, h51025,
andh51027.5.
3-9
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ensembles considered here, one would require a par
number as large asN;108 before discreteness effects b
come unimportant over the time scales of interest.

One important issue is the extent to which the behavio
orbit ensembles evolved in different frozen-N realizations of
the same potential with the same numberN is, or is not, the
same. For the integrable Plummer and ellipsoid potential
would appear that, even for numbers as small asN;103, the
statistical properties of orbit ensembles are essentially
same for different frozen-N realizations. This, however, i
not true for chaotic ensembles. In this case, one appear
requireN.105 or so before noticeable differences betwe
different realizations are suppressed. This is, e.g., eviden
Fig. 9, which exhibitss r for the same initial conditions use
to generate Fig. 8, now focusing on a time interval only o
fifth as long and including with dotted lines the results of t
different realizations that were averaged to yield the so
line.

B. Approach towards a well-mixed state

That initially localized ensembles of chaotic orbi
evolved in a smooth potential should diverge exponentiall
more or less obvious; and the simulations described in
paper show that the graininess associated with finiteN has
the same qualitative effect as noise with characteristic am
tudeh}1/N. Frozen-N evolution results in a divergence th
is even faster than that associated with the unperturbed
semble, albeit no longer strictly exponential.

Less obvious, but also true, is the fact that chaotic
sembles integrated in a smooth potential tend to evolve
wards a near-equilibrium state, and that this evolution ty
cally proceeds exponentially in time. For system
manifesting the reflection symmetries associated with the
tentials explored in this paper, this implies, in particular, th
quantities such as the mean values^x& and^vx& tend to zero
exponentially. The obvious question then is whether discr
ness effects, which can significantly accelerate the initial r
at which ensembles disperse, also act to accelerate the ra
which ensembles evolve towards a nearequilibrium.

FIG. 9. The configuration dispersions r associated with the en
semble exhibited in Fig. 8, now restricted to a shorter time inter
The thick solid line represents an average over different runs
responding to the lighter curves.~a! N5102.5. ~b! N5103.5. ~c! N
5104.5. ~d! N5105.5.
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Similarly, one can consider the effects of graininess
regular orbits. Unperturbed regular orbits evolved in
smooth potential donot exhibit a rapid exponential approac
towards ~near! equilibrium corresponding to a finite phas
space volume. Rather, what one observes is a more mo
power law evolution towards a near-uniform population
the invariant tori to which they are restricted. Allowing fo
discreteness effects allows the orbits to escape from th
invariant tori and, as such, one might again ask: is there
approach towards some more general nearequilibrium? A
if so, how does this approach proceed in time?

For potentials that, in the continuum limit, correspond
integrable systems, weak discreteness effects associated
comparative largeN have only a minimal effect on suc
quantities aŝ x&. However, for smallerN systems, where
discreteness effects become more important, these mom
do converge exponentially towards zero. This is, e.g., illu
trated in Fig. 10~a!, which exhibits the quantity lnu^z&u for
frozen-N ensembles evolved in the integrable Plummer p
tential. Figure 10~b! exhibits the same quantity computed f
the same set of initial conditions, but now evolved in t
smooth potential in the presence of energy-conserving no
It is evident that, at least for comparatively largeN and small
h, the curves are again extremely similar. That the conv
gence towardŝ z&50 terminates at lnu^z&u;23 is a finite
sampling effect, reflecting the fact that the ensembles w
comprised of only 1600 orbits. Even if one were to selec
random 1600 points from a continuous distribution w
^z&50, one would have a sample for which^z&Þ0.

For the case of chaotic potentials one observes an e
nential decrease in such moments, even in the continu
limit, but discreteness effects again serve to increase the
associated with this evolution. This is, e.g., illustrated
Figs. 11~a! and 12~a!, which exhibit lnu^z&u for the wildly
chaotic and sticky ensembles used to generate Figs. 7 an
The degree to which this enhanced exponential evolution

l.
r-

FIG. 10. ~a! The quantity lnu^z&u for an initially localized en-
semble evolved in frozen-N realizations of the integrable Plumme
potential ~3.2! with ~from bottom to top! N5103, N5103.5, N
5104, N5104.5, andN5105. The top curve corresponds to evolu
tion in the smooth potential.~b! lnu^z&u computed for the same initia
conditions, now evolved in the smooth potential in the presence
energy-conserving noise withh51023, h51023.5, h51024, h
51024.5, h51025, andh51025.5.
3-10
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CHAOS AND THE CONTINUUM . . . . II. . . . PHYSICAL REVIEW E 65 066203
be mimicked by energy-conserving noise is illustrated
Figs. 11~b! and 12~b!. As for Figs. 7~b! and 8~b!, the top
curve in each of these panels corresponds to noise with
plitude h51027.5, which, once again, is the weakest noi
not to occasion a significant increase in the overall effic
of chaotic mixing.

VI. TRANSITIONS BETWEEN REGULAR
AND CHAOTIC BEHAVIOR

Friction and noise can convert regular orbits into chao
orbits and vice versa. Suppose, e.g., that an initially cha
orbit is evolved in a smooth potential in the presence of no
for some finite period and that the noise is then turned off
the evolution is continued in the absence of noise, one m
then find that the orbit has become regular with no posit
Lyapunov exponents. Why this can happen is easy to un
stand: Noise serves to continually ‘‘bump’’ the orbit fro
one smooth characteristic to another and it is quite poss
that such ‘‘bumps’’ will eventually deflect the orbit from
chaotic to a regular characteristic. To the extent that discr
ness effects can be mimicked by noise, one would anticip
similar transitions in anN-body evolution@28#.

This was not an issue for orbits evolved in the potenti
~3.2! and~3.5!, both of which are integrable. This possibilit
is also unimportant for the nonintegrable black hole p
ellipsoid potential discussed above, since for the ener
and black hole masses that were considered, the energet
accessible phase space is almost completely chaotic. H
ever, the possibility of such transitions is a major issue
the Dehnen potential, where for most energies, the cons

FIG. 11. ~a! The quantity lnu^z&u for an initially localized en-
semble of wildly chaotic orbits evolved in frozen-N realizations of
the nonintegrable potential~3.6! with ~from bottom to top! N
5102.5, N5103, N5103.5, N5104, N5104.5, N5105, and N
5105.5. The top curve corresponds to evolution in the smooth
tential. ~b! lnu^z&u computed for the same initial conditions, no
evolved in the smooth potential in the presence of ener
conserving noise withh51022, h51022.5, h51023, h51023.5,
h51024, h51024.5, h51025, andh51027.5.
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energy hypersurface admits large measures of both reg
and chaotic orbits.

A hint that such transitions may be present derives from
computation ofDr , the mean separation between frozenN
orbits, and smooth characteristics with the same initial c
dition, generated from ensembles of initial conditions cor
sponding to only regular or only chaotic orbits. One exam
is provided in Fig. 13, which exhibitsDr (t) for ensembles
evolved in frozen-N realizations of the Dehnen distributio
with N5104, N5104.5, and N5105. The three left panels
were generated from regular initial conditions, the three ri
panels from chaotic initial conditions. Both sets of initi
conditions were selected to have very low energies, so
they were restricted to the central portions of the syst
@27#.

It is clear that the chaotic initial conditions yield a mo
irregular time dependence although, as expected, in b
casesDr evidences a nearly linear growth in time. Howeve
it is also obvious that the growth timetG for the chaotic
initial conditions isnot much longer than the growth time fo
the regular initial conditions. For all three values ofN, the
best fit value oftG is comparable for the regular and chao
initial conditions although, forN5105, it is clear thatDr
grows somewhat more slowly for the regular orbits. The o
vious interpretation is that, even at very early times, a s
nificant fraction of the initial conditions have switched b
tween regular and chaotic behavior.

Direct proof that such transitions occur, and an estimate
the transition time scale, is straightforward to obtain. Giv
orbital data from frozen-N ensembles integrated for a tot
time T, one can use snapshots at earlier timest,T to gen-
erate new ensembles of initial conditions and integrate th

FIG. 12. ~a! The quantity lnu^z&u for an initially localized en-
semble of sticky chaotic orbits evolved in frozen-N realizations of
the nonintegrable potential~3.6! with ~from bottom to top! N
5102.5, N5103, N5103.5, N5104, N5104.5, N5105, and N
5105.5. The top curve corresponds to evolution in the smooth
tential. ~b! lnu^z&u computed for the same initial conditions, no
evolved in the smooth potential in the presence of ener
conserving noise withh51022, h51022.5, h51023, h51023.5,
h51024, h51024.5, h51025, andh51027.5.
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ensembles in the smooth potential to compute Lyapunov
ponents. Comparing the results of such integrations with
tegrations of the original initial conditions in the smooth p
tential then permits one to quantify the extent to whi
discreteness effects have made a regular ensemble less
lar and/or a chaotic ensemble less chaotic@29#.

The results of such an analysis are summarized in Fig.
which plots the mean finite time Lyapunov exponent^xS& for
smooth orbit ensembles as a function oft. The three left
panels were generated for the low energy ensembles,
three right panels for higher energy ensembles@24#. In each
case the initially chaotic ensembles are represented by
monds and a solid line, the initially regular ensembles
represented by triangles and a dashed line. The three
again correspond, respectively, toN5104, N5104.5, andN
5105.

In each case the meanxS for the initially chaotic en-
sembles decreases systematically witht and the meanxS for
the regular ensembles increases, exactly what would be
pected if, ast increases, progressively larger numbers
transitions between regularity and chaos have occured du
the frozen-N evolution. Indeed, to the extent that the tw
ensembles of initial conditions sample the same phase s
regions, one would expect that the values ofxS for the regu-
lar and chaotic ensembles should converge to a com
value. It is evident that, for the lower energy ensemble, c
vergence or nearconvergence has in fact been achieve
the largest values oft, and it is also apparent that conve
gence happens more rapidly for smallerN. This again is
exactly as expected. LargerN corresponds to weaker nois

FIG. 13. The quantityDr for two different initially localized
ensembles of sticky chaotic orbits with the same~low! energies,
each evolved in frozen-N realizations of the Dehnen potential.~a! A
regular ensemble withN5104. ~b! A chaotic ensemble withN
5104. ~c! The regular ensemble withN5104.5. ~d! The chaotic
ensemble withN5104.5. ~e! The regular ensemble withN5105. ~f!
The chaotic ensemble withN5105.
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but weaker noise should be less effective in inducing tran
tions.

A priori it might seem surprising that the meanxS for the
regular orbits approaches its limiting value much mo
quickly than does the mean for the chaotic orbits. This, ho
ever, is likely a manifestation of the phase space struc
associated with the Dehnen potential. For both low and h
energies, the initially regular ensemble corresponds in
smooth potential to box orbits that occasionally pass qu
close to the center of the system, but in the center, the reg
and chaotic phase space regions are entangled in a very
plex fashion, so that it is comparatively simple for initial
regular orbits to be deflected to chaotic trajectories.

VII. DISCUSSION

The experiments described in this paper lead to sev
unambiguous conclusions regarding the behavior of or
and orbit ensembles evolved in frozen-N realizations of
smooth density distributions.

It is, for example, clear that ordinary Lyapunov expone
computed for individual frozen-N trajectories donot provide
a useful characterization of the degree ofmacroscopic chaos
manifested by these trajectories. Different initial conditio
with the same energy evolved in frozen-N realizations of a

FIG. 14. The mean Lyapunov exponent^xS& for ensembles
evolved in the smooth Dehnen potential, selecting as initial con
tions the final phase space coordinates of orbits that had b
evolved in frozen-N potentials for some timet. ~a! Initially regular
~solid line! and chaotic~dashed line! low energy orbits evolved with
N5104. ~b! Initially regular ~solid line! and chaotic~dashed line!
higher energy orbits evolved withN5104. ~c! The same as~a! but
for N5104.5. ~d! The same as~b! but for N5104.5. ~e! The same as
~a! but for N5105. ~f! The same as~b! but for N5105.
3-12



ha
en
s,
tic
rg

ee

T
rg

d

ic
o
i

ie
b
if

c
i-
n

f
a-
r-

ai
ic

m

ld
c
a
o
-

fo
ns

.g

t
b
se
ve

-
ite
h
ne
h
e
di

ing

di-
l
li-

in
ive

-

is
cts
on

n
er

e
e

ects
-

r

s of

to

ffer-
lar
oth

or-
le.
on

he

im-
tic

um

t at
e
-
tri-
te-

ith
fi-
T-
in
the

ter,
.S.
3-

CHAOS AND THE CONTINUUM . . . . II. . . . PHYSICAL REVIEW E 65 066203
specified potential typically have Lyapunov exponents t
are comparable in magnitude and exhibit little if any dep
dence onN, even though in terms of their bulk propertie
one may look very nearly regular and another wildly chao

This can be interpreted by asserting that, at least for la
N, one can make comparatively clear distinctions betw
two types of chaos that may be associated with theN-body
problem. On the one hand, there ismicroscopic chaosasso-
ciated with close encounters between nearby masses.
chaos, which is presumably responsible for the la
Lyapunov exponents associated with frozen-N orbits, is~al-
most! always present but, at least for comparatively largeN,
tends to ‘‘wash out’’ macroscopically. On the other han
there may bemacroscopic chaos, which, if present in the
continuum limit, will also have manifestations in frozen-N
simulations.

The experiments also demonstrate a clear sense in wh
asN increases, frozen-N trajectories become more similar t
smooth potential characteristics generated from the same
tial condition. In particular, it becomes progressively eas
to distinguish between regular and chaotic macroscopic
havior. This similarity can be quantified in at least three d
ferent ways.

~1! The rate at which frozen-N orbits and smooth chara
teristics diverge.For both regular and chaotic initial cond
tions, frozen-N trajectories and smooth characteristics te
to diverge linearly in time. However, theN dependence o
the time scaletG associated with this divergence differs dr
matically. For initial conditions corresponding to regular o
bits, tG}N1/2; for chaotic initial conditions,tG} ln N. It fol-
lows that for largeN, frozen-N trajectories and smooth
characteristics corresponding to regular orbits rem
‘‘close’’ much longer than do trajectories and characterist
corresponding to chaotic orbits.

~2! The complexity of Fourier spectra constructed fro
orbital time series.For small N, both regular and chaotic
initial conditions will, when integrated into the future, yie
Fourier spectra that are much more complex than the spe
associated with the evolution in the smooth potential. In p
ticular, both regular and chaotic orbits will yield spectra
comparable complexity. However, asN increases the com
plexities decrease and for sufficiently largeN, one sees a
convergence towards the complexities appropriate
smooth characteristics with the same initial conditio
whether these are regular or chaotic.

~3! The bulk properties of phase mixing, as probed, e
by lower order moments.Phase mixing of initially localized
ensembles in frozen-N systems is invariably more efficien
than phase mixing in the corresponding smooth potential,
asN increases, the observed evolution comes to more clo
resemble phase mixing of the same initial conditions evol
in the smooth potential.

At least for comparatively largeN, many discreteness ef
fects can be well mimicked by energy-conserving wh
noise with amplitudeh}1/N. This is in close agreement wit
naive expectations based on the modeling of discrete
effects as a sequence of incoherent binary encounters, w
would suggesth}(ln N)/N; and indeed, the simulations ar
also consistent with the latter dependence. Modeling
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creteness effects in terms of noise works well in predict
both the expected complexities of individual frozen-N trajec-
tories and moments associated with phase mixing. This in
cates that, at least for largeN, noise can be used to mode
both bulk statistical properties of orbit ensembles and qua
tative properties of individual orbits. This suggests strongly
that investigations of the effects of white noise on orbits
nonintegrable potentials—which are much less expens
computationally than frozen-N integrations—can provide in
formation about the effects of graininess.

That noise really can mimic the effects of graininess
nontrivial theoretically. The notion that discreteness effe
can be modeled using friction and white noise is based
calculations@3,4# of bulk properties of orbits over very long
time scalestR;(N/ lnN)tD , and involves the tacit assumptio
that the flow is regular. The effects explored in this pap
focus on time scales!tR , take into consideration also th
behavior of individual orbits, and incorporate explicitly th
possibility of macroscopic chaos.

Nevertheless, it is clear that modeling discreteness eff
with white noise isnot completely satisfactory. The agree
ment between frozen-N and noisy integrations is poor fo
comparatively smallN, and noisy integrations of the form
described in this paper cannot be used to obtain estimate
the Lyapunov exponents associated with frozen-N orbits.
The development of a more realistic noise and its use
model systems withN@105 is currently underway.

Discreteness effects can induce transitions between di
ent orbit types, including both transitions between regu
and chaotic behavior, which are impossible in the smo
potential, and transitions between~say! sticky and wildly
chaotic behavior, which in the smooth potential are not f
bidden but typically occur only on a much longer time sca
Not surprisingly these transitions appear to be more comm
for smallerN. Indeed, the simulations are consistent with t
interpretation that for sufficiently largeN, transitions be-
tween regular and chaotic behavior become essentially
possible and transitions between sticky and wildly chao
behavior happen no more rapidly than in the continu
limit.

Finally, and perhaps most importantly, it appears tha
least in terms of macroscopic properties,it does make sens
to speak of a smooth N→` continuum limit. However, con
vergence towards this limit is much slower for density dis
butions, which in the continuum limit correspond to nonin
grable potentials that admit chaotic orbits.
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